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Abstract 

 
To improve the brightness of images and reveal hidden information in dark areas is the main 
objective of low-light image enhancement (LLIE). LLIE methods based on deep learning show 
good performance. However, there are some limitations to these methods, such as the complex 
network model requires highly configurable environments, and deficient enhancement of edge 
details leads to blurring of the target content. Single-scale feature extraction results in the 
insufficient recovery of the hidden content of the enhanced images. This paper proposed an 
edge detection-based multi-scale feature enhancement network for LLIE (EDMFEN). To 
reduce the loss of edge details in the enhanced images, an edge extraction module consisting 
of a Sobel operator is introduced to obtain edge information by computing gradients of images. 
In addition, a multi-scale feature enhancement module (MSFEM) consisting of multi-scale 
feature extraction block (MSFEB) and a spatial attention mechanism is proposed to thoroughly 
recover the hidden content of the enhanced images and obtain richer features. Since the fused 
features may contain some useless information, the MSFEB is introduced so as to obtain the 
image features with different perceptual fields. To use the multi-scale features more effectively, 
a spatial attention mechanism module is used to retain the key features and improve the model 
performance after fusing multi-scale features. Experimental results on two datasets and five 
baseline datasets show that EDMFEN has good performance when compared with the state-
of-the-art LLIE methods. 
 
 
Keywords: low-light image enhancement, deep learning, edge detection, multi-scale feature 
enhancement, spatial attention mechanism. 
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1. Introduction 

Low-light image enhancement (LLIE) is a major challenge in the task of computer vision. 
Low-light images have some defects, such as blurred target content, low brightness, poor 
contrast, and darker colors. These defects have a great impact on tasks like target detection, 
recognition, and image segmentation. Therefore, to recover image details and compensate for 
image brightness and contrast, LLIE techniques are widely studied. The mainstream LLIE 
techniques include traditional LLIE methods and deep learning-based LLIE methods. 

Traditional LLIE methods. Traditional LLIE methods can divide into two main 
categories: histogram equalization-based (HE) methods [1-2] and Retinex theory-based 
methods [3-6]. Many HE methods are designed for LLIE in the early days. Yang et al [1] 
proposed the adaptive Contrast Enhancement (ACE), which uses local information to highlight 
details and textures, thus sharpening the edges of the image. ACE enriches the spatial structure 
of the image but generates a lot of noise and takes a long time to compute. Brightness 
preserving dynamic histogram equalization (BPDHE) [2] was proposed that maintained 
luminance is not adapted to low-light images as it must maintain luminance. HE methods are 
simple and fast, however, they usually lead to over-enhancement. Recently, the methods based 
on the Retinex theory have been widely used in LLIE. Wang et al. [3] proposed a Naturalness 
preserved enhancement (NPE) for non-uniformly illuminated images. NPE method enhances 
image details while still maintaining naturalness. The weighted variance model proposed by 
simultaneous reflectance and illumination estimation (SRIE) [4] to estimate the illumination 
and reflectance of the observed image can suppress noise to a certain extent. Multi-scale fusion 
(MF) [5] decomposed the image into reflectance image and illumination image, where the 
latter is processed under different illumination levels, these processed images are appropriately 
weighted fusion to obtain the final illumination map. The reflectance image compensates this 
illumination image to obtain an enhanced image. Guo et al [6] proposed a simple but effective 
illumination map estimation (LIME) that allows the illuminance mapping to be enhanced 
accordingly. This illuminance mapping estimated the illuminance of each pixel by its 
maximum value in the R, G, and B channels, coupled with a structured refinement of the initial 
illuminance mapping. Retinex achieved a balance among color constancy, edge enhancement 
and dynamic range compression, thus allowing adaptive enhancement of a wide range of 
different types of images. However, it may cause color distortion and artifacts in the enhanced 
images. 

Deep learning-based LLIE methods. Deep learning-based LLIE methods are received 
more and more attention due to their non-linear feature learning capability. Deep learning-
based LLIE methods are mainly classified into supervised learning, unsupervised learning, and 
zero-reference learning. Supervised learning methods usually compare the enhanced results 
with the labeled image for supervising the network training process. Kin Gwn Lore et al. [7] 
first combined CNN with LLIE techniques and proposed a depth-based self-encoder approach 
to make the brighter parts of the image adaptively not over-amplified in the high dynamic 
range. RetinexNet [8] applied Retinex theory to CNN to estimate and adjust the illumination 
map to achieve LLIE. This method can achieve good results, but there may be a certain amount 
of noise in the enhancement results. Therefore, KinD [9] designed a network same as 
RetinexNet by adding a noise-canceling recovery network to improve image fidelity. 
DeepUPE [10] learnt the mapping relationship between the illumination map and the image 
by extracting local and global features. Li et al. [11] proposed a luminance-aware pyramid 
network (LPNet). The network learnt the luminance between the input image and the GT 
image by adding light-sensitive losses to progressively supervise the refinement of the 
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illumination in the branches. Models for unsupervised learning can be trained on unpaired 
datasets. EnlightenGAN [12] is the first unsupervised method that employ a multi-scale 
discriminator with a self-regularising loss function. Zero-sample learning methods can learn 
enhancement from test images only. Zero-DCE [13] took low-light images as input and high-
order curves as output and dynamically adjusted the curves as input at the pixel level to obtain 
enhanced images. An improved and simpler of Zero-DCE is proposed called Zero-DCE++ 
[14], which maintains the performance of Zero-DCE while providing faster inference. Pan et 
al. [15] proposed a simple and effective video moment retrieval network, which is trained by 
a bottom-up method, possesses robustness and can locate the target moment in untrimmed 
videos based on natural language queries. In [16], it shows how deep learning to extract 
features, reinforcement learning to optimize decisions, and world models to predict 
environments can improve learning and decision-making. The advantages of these integrated 
methods are the ability to handle complex tasks, adapt to dynamic environments, and 
demonstrate strong performance and adaptability in various domains. Ma et al. [17] described 
a method called "Motion Stimulation" for combinatorial action recognition. The method 
utilizes motion stimulation to enhance the representation of action features and captures the 
temporal information of the action by applying the stimulation to video frames of different 
periods. Fu et al. [18] proposed a method called "Recurrent Thrifty Attention Network" for 
remote sensing scene recognition. The method effectively captures key features in remote 
sensing images by introducing a recurrent attention mechanism and is optimized in terms of 
computational efficiency. Ma et al. [19] proposed the SCI method, which is a self-calibrated 
illumination learning framework for low-light image enhancement. It features efficiency, 
flexibility, and high quality. Zheng et al. [20] proposed the Semantic method, a semantic-
guided zero-shot low-light enhancement network that exhibits characteristics of zero-shot 
learning, efficiency, and semantic preservation. Wu et al. [21] proposed the URetinex-Net 
method, which enhances low-light images through deep unrolling networks and implicit prior 
regularization modeling. It exhibits adaptability and high efficiency. Fan et al.[22] proposed 
an image enhancement network (HWMNet) based on an improved hierarchical model: M-
Net+. Using semi-wavelet attention blocks on M-Net+ to enrich features in the wavelet domain. 
The normalized flow model proposed by Wang et al.[23] can effectively model the one-to-
many relationship between low-light image enhancement and normal exposure images. By 
learning to map the distribution of normally exposed images into a Gaussian distribution, the 
method is better able to model the conditional distribution of normally exposed images, 
thereby providing better quantitative and qualitative results, including improved exposure 
illumination, reduced noise and artifacts and enhanced color. 

Although these methods are effective for LLIE, there are still deficiencies. Current deep 
learning-based methods do not take sufficient account of edge information. However, the edge 
information is important for the image enhancement results due to the presence of texture 
details at the edges of images. Overly complex network models are too demanding in terms of 
execution efficiency and performance. Therefore, to address these issues, an edge detection-
based multi-scale feature enhancement network is proposed for LLIE (EDMFEN) in this paper. 
The network combines an edge detection module (EDM) with a multi-scale feature 
enhancement module (MSFEM). The edge information extracted by EDM is used to refine the 
original image, and then the extracted edge information is fused with the output of MSFEB to 
enrich the enhanced image detail and texture structure. High-quality images with sharp edges 
can be reconstructed with minimal pixel loss. 
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The main contributions of this paper can be summarized as follows: 
• We proposed a lightweight network for LLIE, EDMFEN, which first acquires 

edge information from the original images, then acquires features from multi-
scale images and fuses them to reconstruct the enhanced images. 

• An EDM constructed by the Sobel operator is introduced to extract edge 
information from original images, and the spatial structure details are 
complemented to acquire high-quality enhanced images. 

• An MSFEM with an attention mechanism is proposed. In this module, multi-
branch parallel computing is used to obtain image features with different 
perceptual fields, and an attention mechanism is introduced to obtain contrast 
information in the image to make the obtained features more representative. 

2. Related works 

2.1 Light weight Network 
Complex network models often have high requirements for hardware devices. How to solve 
the storage and computation problems of complex networks for deep learning is the key to 
applying these methods to real-world scenarios. lightweight network models are currently 
becoming a research trend for various tasks in computer vision. SqueezeNet [24] reduces 
parameters by 1×1 Conv in the Squeeze module and expands the number of channels with the 
Expand module to retain more features with fewer channels. The depth-separable convolution 
is used in MobileNet [25] to convolve different channels separately, and then point-by-point 
convolution is used to fuse the features, greatly reducing the amount of computation and 
parameters. The core of ShuffleNet [26] is group convolution and channel reorganization, 
which reduces computational effort while maintaining model performance. These lightweight 
networks usually have a small amount of computation and a number of parameters, as well as 
have high execution efficiency. 

2.2 Edge detection 
Edge is an important part of images as well as the basis for computer vision tasks. Traditional 
edge detection methods using differential operators are more sensitive to noise in the image 
and fast but obtain incomplete information about the structure. The Canny detection [27] 
detects good closure and continuity of edges, however, the execution is less efficient. Roberts 
operator [28] is an operator that uses local difference operators to find edges. It uses the 
difference between two adjacent pixels in the diagonal direction to approximate the gradient 
amplitude to detect edges. The effect of detecting vertical edges is better than oblique edges, 
and the positioning accuracy is high. It is sensitive to noise and cannot suppress the influence 
of noise. The Prewitt operator [29] is an edge detection operator that detects the position and 
intensity of edges by performing convolution operations in the horizontal and vertical 
directions in the image. It can effectively capture edge features in both horizontal and vertical 
directions and performs well in edge detection tasks, but is more sensitive to noise. The Sobel 
detection [30] is a simple and computationally compact method that has a smoothing effect on 
noise. Using Sobel detection can be obtained accurate edge detail information and a rich 
texture structure from the image. 

2.3 Attention mechanism 
Recently, most attention blocks have been proposed to focus on deep weighted non-matching, 
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emphasizing essential information features and suppressing useless features. Hu et al. [31] 
proposed the Squeeze and Stimulate block to perform recalibration of the feature responses of 
channels by modeling the inter-dependencies between them. Considering the importance of 
the positional relationship of each pixel, a non-local Network (NLNet) [32] is proposed to 
compute the interaction between any two positions ignoring their distance. GCNet [33] 
simplified the NLNet framework by using query-independent attention maps for all positions. 
Fu et al. [34] designed a dual-attention network that contains spatial and channel modules to 
combine local features with global features. 

3. Proposed method 
EDMFEN improves the edge details and clarity of low-light images and enhances the overall 
contrast of the image by fusing the edge information and multi-scale features of the image. 
The edge detection block is used to extract the edge information of the image, which can help 
enhance the details and edges of the image to make it clearer. In the multi-scale feature 
extraction block, the multi-scale information is extracted, and combined with the ECA 
attention mechanism, the weights of features on different scales can be adaptively assigned 
according to their importance, thereby enhancing important information in the image. The 
edge information of the image is continuously injected into the multi-scale information to 
better restore the details of the image. The framework of EDMFEN is shown in Fig. 1. 
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Fig. 1. The framework of the EDMFEN 
 

Two EDBs are used to extract edge information, while four MSFEMs are used to extract 
multi-scale features. 

Define the input image as I which is processed by two 3×3 Convs to obtain the feature 
image oI . The output in the edge extraction branch can be written as (1): 

 ( )( )1 EDB EDBI = F F I  (1) 

where EDBF  denotes the EDB for the edge extraction section, and 1I  is the output of EDM. 
For multi-scale features extraction, refining the output of each MSFEM in the branch can be 
defined as (2): 

 ( )
( )

0

1





MSFEM
n

MSFEM n-1

F I                    n=1             
E =

F E +I          n=2,3,...,n                  
 (2) 

where MSFEMF  denotes the operation of MSFEM, nE  represent the output of n-th  MSFEM. 
Each intermediate output of the MSFEM is added to the next MSFEM by adding element-by-
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element to the output of the edge extraction module to gradually guide the feature extraction 
module. 

To make use of the image features more efficiently, a 1×1 Conv is used to aggregate these 
multi-scale features. In this way, the integrity of the hierarchical information can be retained 
with a relatively small number of parameters and computational effort. Finally, a 3×3 Conv is 
used to obtain the enhanced images. 

In the training process, given a training data set { }
1

，
Mm m

in gt m=
I I , the total loss function is 

minimized by comparing the real image with the output image of the model, which can be 
expressed as (3): 

 ( )( )
1

1arg min
M

m m
total E in gED tF N

m
M= L F I I

Mθ
θ

=
∑ ，  (3) 

where m
inI  and m

gtI  represent the input and the target image respectively, θ  denotes parameters 
of the EDMFEN, ( ).EDMFENF  represents the EDMFEN, ( ).totalL  represents the total loss 
function to minimize the difference between target image and enhanced image, the loss 
function is described in the next section 3.3. 

3.1 Edge detection module 
Edges are an important part of images and contain a large amount of spatial structure 
information. Extracting edge information can retain the structural information of the image. In 
low-light image enhancement, edge detection algorithms can be used to extract edge 
information in the image, and then the brightness, contrast, color, and other attributes of the 
image can be adjusted based on the edge information to achieve better enhancement effects. 
There is a certain amount of noise in the edges of most images, which may produce artifacts, 
so an edge detection branch consisting of an edge detection module is introduced in EDMFEN 
to extract edge information of the image. The Sobel operator method is simple and has a small 
amount of calculation. It can not only produce better detection results but also have a smooth 
suppression effect on noise. Therefore, the edge detection block provides more accurate edge 
direction information and restores rich texture information of the image, so we introduced the 
Sobel operator in EDMFEN to extract the edge information [35]. The structure of EDB is 
shown in Fig. 2. 

Low light image 
I

Gx

Gy

-1 -2 -1

0 0

11

0

2

-1 0 1

-2 0

1-1

2

0

GX

GY

GY I

GX I

Fig. 2. The structure of EDB 
 
 



986                                                                                Li et al.: EDMFEN: Edge detection-based multi-scale feature  
enhancement Network for low-light image enhancement 

The Sobel operator is used to calculate a gray-scale approximation to the image luminance 
function. The Sobel operator can generate the corresponding gradient vector at any point in 
the image. The Sobel operator detects image edges based on the gradient method. The 
components of the gradient method represent the rate of change of pixel values with distance 
from the x  and y  directions. The Sobel operator takes the derivative of the input image pixels 
and finds the point with the largest derivative to locate the edge. In a discrete image, the pixel 
spacing between two points can be considered as 1, based on the top, bottom, left, and right 
neighborhood of the edge point. The weights obtained are the convolution kernels, and the two 
3×3 matrices, XG  in the horizontal direction and YG  in the vertical direction, the horizontal 
and vertical luminance difference approximations can be obtained by convoluting the image 
with XG  and YG . Where xG  and yG  represent the image gray values detected by the 
horizontal and vertical edges, respectively, then the gradient at each pixel is estimated, and the 
edge point is found for each point in the image by combining the results of the convolution. 
As shown in (4): 

 ( ) 2 2, = +x yEdgpoint x y G G  (4) 
The Sobel detection has good detection results and smooth noise processing effect. It can 

provide more accurate edge direction information and restore rich texture information of 
images. 

3.2 Multi-scale feature enhancement module (MSFEM) 
Some research work [36] [37] shows that multi-scale framework can extract features of 
different receptive fields, and these features represent rich information in images. Therefore, 
we proposed a multi-scale feature extraction module to increase the detailed information of 
the image. MSFEM is designed to obtain rich features, comprising an MSFEB and an attention 
mechanism block. The MSFEB is used to extract multi-scale features. In addition, to prevent 
the loss of shallow features when extracting deep information, a jump connection is added 
after the attention mechanism block. High-contrast, detail-rich image features can be obtained 
by using MSFEM. The structure of MSFEM is shown in Fig. 3. 
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3.2.1 Multi-scale feature extraction block (MSFEB) 
To obtain rich features, a multi-scale feature extraction module is designed to obtain features 
of different scales through different receptive fields. In Fig. 3, the input of the network is 
prepossessed by a 1×1 Conv and then split along channel dimensional to divide into four 
groups that have the same channels. Each group uses a different number of 3×3 Convs to 
extract multi-scale features. Two 3×3 Convs and a 5×5 Conv have the same field of perception, 
three 3×3 Convs, and a 7×7 Conv have the same field of perception, and four 3×3 Convs have 
the same field of perception as a 9×9 Conv. However, compared to the direct use of 5×5, 7×7, 
and 9×9 Convs, using combined 3×3 Convs can reduce the number of parameters, retaining a 
larger receptive field in the meanwhile. However, using a grouped model hinders the flow of 
information between groups and weakens the feature representation. To facilitate feature 
fusion among groups, after group exchange, the obtained feature maps at different scales are 
stacked using contact. The stacked information is integrated using 1×1 Conv, and then the 
leakyRelu activation function is applied to filter the valid features. The channels are 
downscaled using 1×1 Conv to restore to the same channel number as input, thereafter the 
features are weighted using the attention mechanism module. 
 

3.2.2 ECANet 
The core idea of the attention mechanism in illumination image enhancement is to highlight 
key areas in the image to enhance image quality. Reduce the influence of noise and other 
interference factors, emphasize necessary information features, and suppress useless features. 
In the field of deep learning, the performance of a network relies to receive and process a large 
amount of data. However, at certain moments, only a small part of the data is the most 
important. In this case, the attention mechanism is very suitable. In [31], a block is proposed 
to squeeze and expand channels, thus establishing the interdependence of all channels. The 
attention mechanism further handles multi-scale feature enhancement by weighting key 
features in the image to obtain weighted feature maps. ECANet [38] can effectively improve 
model performance by avoiding dimensionality reduction and increasing interactions between 
adjacent channels. In ECANet, input features are processed through global average pooling 
layers and 1×1 Convs to aggregate channel features and improve information flow. The 
structure is shown in Fig. 4. The input feature map is acquired through global average pooling 
to obtain a 1×1 Conv feature vector, and then the feature vector is passed through a one-
dimensional convolution and activation function with a convolution kernel size of 5 to obtain 
the weight factor. Finally, the weight factor is multiplied by the input feature maps to obtain 
feature maps with an attention mechanism. The application of ECA in this section can 
effectively promote multi-scale feature fusion, resulting in more representative feature maps. 
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3.3 Loss function 
Given a training dataset to train the network model, a suitable loss function is also essential. 
We designed a hybrid loss strategy, which is combined SSIM loss with VGG loss, to improve 
the quality of enhanced images in spatial detail and edge structure. 
SSIM loss: SSIM can evaluate image quality, which is measured from three parts: image 
brightness, contrast, and structure, as shown in (5) and (6): 
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where I  is the enhanced image. ( )l I,I , ( ),c I I , and ( ),s I I  are the difference in luminance, 

contrast, and structure between I  and I . α , β , and λ  represent the proportion of different 
characteristics in the SSIM measure, σ I  and σ

I are the mean values of I  and I  respectively, 

µI  and 
I

µ


 are the variance of I  and I  respectively, 
I I

µ


 is the covariance between I  and I , 

1C , 2C , and 3C  are constants. We use multi-scale SSIM loss function to enhance the structural 
similarity of images. SSIML  can be expressed as (7): 

 1−SSIML = SSIM  (7) 
The larger the value of SSIM, the less loss in the image and the more similar the structure. 
Perceived loss: We use VGG perceived loss to calculate the loss of the spatial dimension of 
the image, using the semantic information of the image to improve the spatial detail of the 
enhanced images. As shown in (8): 

 
2

, , , ,
1 1 1

1 W H C

x y sVGG x y s
x y s

L = I I
WHC = = =

−∑∑∑   (8) 

where W , H , and C  represent the width, height, and channel of the image. 
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Total loss: The final total loss of the network model is the weighted sum of perceived loss 
and SSIM loss, totalL can be expressed as (9): 

 λ λ=total s SSIM v VGGL L + L  (9) 
whereλs  and λv denote the weights corresponding to SSIML  and VGGL  

4. Experiments results 

4.1 Experimental setup  
To verify the effectiveness of the EDMFEN, we designed and analyzed the experimental 
results on LOL [39] and MIT5K [40] datasets. To ensure the fairness of the experiments, all 
methods are experimented on a PC with an NVIDIA GeForce RTX 2070 8GB GPU. Adam is 
used as an optimizer with the model default parameters. We set the batch size to 16, the input 
image size for each batch to 96×96, and set 0.0002 as the initial learning rate. For all 
experimental methods, the parameter settings and code details are consistent. 

4.2 Image Dataset 
The experiments are trained and tested on LOL and MIT5K datasets. For the LOL dataset, 450 
pairs of images are used for training and validation, 50 pairs of images are used for testing. 
For the MIT5K dataset, 4500 pairs of images are selected for training and validation, 500 pairs 
of images for testing. In addition, to verify the robustness of EDMFEN, we tested five 
benchmark datasets MEF [41], NPE [3], VV [42], DICM [43] and LIME [4]. 

4.3 Compare with the latest methods 
To demonstrate the advantages of EDMFEN, we compared EDMFEN with traditional 
methods MF [6], NPE [3], SRIE [5], LIME [4] and deep learning KinD [9], LPNet [11], Zero-
DCE++ [14], SCI [19], semantic [20], URetinex-Net [21] in each of the following aspects. 

4.3.1 Quantitative comparison 

EDMFEN is compared quantitatively with several current methods of image enhancement. 
Two evaluation indicators with references, peak signal-to-noise ratio (PSNR) and structural 
similarity (SSIM), are chosen to evaluate network performance. PSNR measures the noise 
level after image enhancement, and it is the mean square error between the enhanced image 
and the original image. SSIM indicates the structural similarity of images, including brightness, 
contrast, and structure. The use of PSNR and SSIM can provide a more comprehensive and 
objective evaluation of the quality of enhanced images. Table 1 reflects that on the LOL and 
MIT5K datasets, our network achieves good performance, outperforming other methods and 
illustrating the superiority of our approach. The five benchmark datasets of DICM, LIME, 
MEF, NPE and VV are tested on LOL using a pre-training model, and Natural Image Quality 
Evaluation (NIQE) is chosen to evaluate the performance of the enhanced images, with lower 
values of NIQE indicating better performance. In Table 2, our model EDMFEN shows a 
significant advantage over the other methods. Specifically, our method works best on the 
DICM, LIME, MEF, NPE and VV datasets, according to NIQE. The generalization ability of 
EDMFEN model is well demonstrated. 
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4.3.2 Efficiency comparison 
Table 1 summarizes the empirical results, generated on the LOL dataset with image size 512× 
512, and processing speed is compared with metrics (Param, FLOPs, Time). The best results 
in black bold show that the proposed EDMFEN outperforms others in terms of Param and 
FLOPs metrics. The second best result was obtained on the Time metrics. MF, NPE, SRIE, 
and LIME do not involve network parameters, so we are not considering them. It is worth 
mentioning that LPNet is a lightweight network, and our metrics far surpass it. Due to Zero-
DCE++ using only a 7-layer end-to-end network, we are weaker in terms of runtime. We can 
conclude that the proposed model, while simple, exhibits significantly faster speeds compared 
to competitors. This is attributed to fine-tuning small networks and substantial downsampling 
operations that greatly reduce the dimensionality of the inference feature space. 
 

Table 1. Numerical results of LOL and MIT5K datasets 

Methods 
LOL MIT5K 

Param 
[M] 

FLOPs 
[G] 

Time 
[s] PSNR SSIM PSNR SSIM 

MF - - 1.38 18.74 0.67 17.48 0.78 
NPE - - 6.11 17.20 0.53 17.21 0.77 
SRIE - - 2.45 14.25 0.54 19.48 0.79 
LIME - - 3.71 17.37 0.55 14.54 0.75 
KinD 8.49 7.44 1.75 20.38 0.80 21.84 0.79 
LPNet 0.77 0.15 0.65 21.70 0.78 24.55 0.90 

Zero-DCE++ 1.29 0.35 0.02 17.42 0.76 20.21 0.80 
SCI 3.14 0.069 0.17 20.83 0.82 20.46 0.83 

Semantic 2.37 0.12 0.08 20.60 0.79 19.38 0.67 
URetinex-Net 12.29 7.31 1.96 21.33 0.84 21.92 0.82 

Ours 0.48 0.05 0.39 23.08 0.82 25.27 0.92 
 

Table 2. Numerical results of the five benchmark datasets of DICM, LIME, MEF, NPE and VV  

Methods 
DICM LIME MEF NPE VV 

NIQE 
MF 3.49 4.07 3.49 4.11 2.93 
NPE 3.45 4.11 3.53 4.15 3.03 

LIME 3.47 4.09 3.56 4.19 2.79 
SRIE 3.62 4.05 3.45 4.14 3.23 
KinD 4.17 4.67 3.83 4.31 3.06 
LPNet 3.94 4.35 4.26 4.16 3.52 

Zero-DCE++ 4.04 4.19 3.82 4.31 3.85 
SCI 3.40 4.02 4.01 4.05 2.88 

Semantic 3.32 4.05 3.91 4.49 3.41 
URetinex-Net 3.36 3.96 3.52 4.08 2.90 

Ours 3.28 3.95 3.27 4.03 2.78 
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4.3.3 Subjective evaluation 
To validate the effectiveness of our proposed EDMFEN, the qualitative evaluation of the 
proposed method and different methods is conducted in detail based on the subjective visual 
comparison on two different datasets LOL and MIT5K. Fig. 5 shows the images obtained with 
several methods of enhancement on the dataset LOL. SRIE produces an underexposed image, 
and LIME is a little more exposed, but still underexposed compared to the other methods. 
Meanwhile, SRIE and LIME do not recover the pattern details and the color of the images very 
well. The MF and NPE exposures are moderate, but the images they produce contain a lot of 
noise. Specifically, it is particularly noticeable in the cup mouth area in the zoomed-in region. 
The KinD method works better, but it may introduce some artifacts, which result in losing 
details of the image. In detail, it is particularly noticeable in the zoomed-in region. In terms of 
the image as a whole, the LPNet method has a small deficiency in color recovery compared to 
the KinD method, but as can be seen from the enlarged areas, there is a high level of detail 
reproduction in the image. In addition, the images generated by Zero-DCE have distortion due 
to overexposure. SCI and Semantic have higher brightness, the color of the former is lost and 
color shift occurs, the texture details of the latter image are insufficient, and the brightness of 
URetinex-Net is darker and local details are lost. Compared with these above methods, the 
color of the pattern in the picture generated by our proposed EDMFEN is closer to GT and 
more texture details are recovered in the picture. 
 

Fig. 5. The subjective visual in LOL dataset 
 

In addition, Fig. 6 shows the experimental results obtained on the dataset MIT5K. The 
MF and LIME are overexposed resulting in distorted images. The NPE and SRIE methods 
yield images with moderate exposure. Specifically, in the zoomed-in area, it can be seen that 
the roof has good detail recovery, but there is a slight color distortion. The KinD and LPNet 
methods yield more detailed images compared to NPE and SRIE, but the color recovery of the 
image in KinD is inadequate. The color recovery in LPNet is better, but there is some noise in 
the images as seen in the zoomed-in areas. The brightness of SCI and Semantic is higher, and 
the detail recovery of SCI is better, but there is color shift. From the enlarged view of Semantic, 
the texture details of the image are lost too much, and the brightness of URetinex-Net is darker, 
and the local details are lost too much. Compared with these selected methods, our proposed 
EDMFEN is closest to GT, with natural colors, rich detail, and high quality. 

     
LR MF NPE SRIE LIME 

     
KinD LPNet Zero-DCE++ SCI Semantic 

   

  

URetinex-Net Ours GT   
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Fig. 6. The subjective visual in MIT5K dataset 
 

To demonstrate the generalization ability and robustness of our proposed EDMFEN, we 
show the experiment results of our method on DICM, LIME, MEF, NPE and VV benchmark 
datasets in Fig. 7. Our method is generally well compatible with different datasets, achieving 
high-quality detail recovery and brightness enhancement. 

       

Input 

     

 

O
utput 

     

 

 DICM LIME MEF NPE VV  
Fig. 7. The experiment results of our method in DICM, LIME, MEF, NPE and VV benchmark 

datasets 
 

Comparing the proposed method with different methods on benchmark datasets can show 
the advantage on generalization ability of proposed method. Due to space constraint, we 
demonstrated the enhanced results from different methods on VV benchmark dataset, since 
VV is a higher resolution dataset with more details in the images. Our model also shows an 
obvious advantage over those selected methods according to the enhanced results. To show 
specific details, we framed a small part of the image and place a four-fold enlargement of it in 
the lower right corner of the image. In Fig. 8, the reference image is the LR image. According 
to all the results, it is found that each method had some degree of effect on the enhancement 
of the image. In the traditional four methods, the NPE enhanced image is highly exposed and 
noisy. The SRIE method is underexposed and does not have a significant effect on the 
restoration of hidden details in the image. MF has the most significant outcome, but it also 
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enhances the noise in the image. As can be seen in Fig. 8, the deep learning methods work 
better compared to the traditional methods. LPNet and KinD have similar results. Specifically, 
the KinD method is less well exposed, but LPNet has better luminance reproduction, and both 
have higher reproduction of hidden details in the image. Zero-DCE++ has a more pronounced 
brightness enhancement of the image, but it is overexposed and produces some distortion. 
There is less noise in the SCI image, but there is color shift in the image. Semantic has better 
detail recovery, but the image details are not rich enough. The brightness of URetinex-Net is 
darker and the image details are lost too much. Overall, our proposed method tends to be more 
stable in terms of brightness, saturation, and structure enhancement, and the restoration of 
hidden details in the image is noticeable. This demonstrates the good generalization ability of 
EDMFEN. 
 

    
Reference MF NPE SRIE 

    
KinD LPNet Zero-DCE++ SCI 

    
LIME Semantic URetinex-Net Ours 

Fig. 8. VV benchmark dataset comparison chart 

5. Ablation experiment 
To demonstrate the importance of each module for EDMFEN, ablation experiments are carried 
out. We study the importance of EDM, MSFEM and attention mechanism module to the 
modular network framework. Ablation experiments are performed on LOL dataset by 
removing one module at a time. 

Case1 represents the experiment without MSFEB, Case2 represents the experiment 
without attention module, Case3 represents the experiment without EDB, and Case4 represents 
the complete experiment EDMFEN. In Table 3, by comparing Case1 and Case4, using multi-
scale feature extraction has a significant effect on LLIE, because multi-scale features can better 
represent the rich information in the image. In addition, the comparison results between Case 
2 and Case 4 illustrate the impact of the attention module on the enhancement effect. Using 
the attention module can filter unnecessary redundant information in the image and make full 
use of key features. Finally, Case3 and Case4 illustrate that incomplete edge information also 
has a great impact on the results, and edge information has a great impact on the enhancement 
of image spatial details. By comparing these ablation experiments, we can conclude that the 
settings of each module have a certain impact on image enhancement, and the aggregation of 
all modules enables the model to achieve optimal performance. 
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Table 3. Ablation experiments on dataset LOL 

Case EDB MSFEB Attention PSNR SSIM 
Case1 √   18.28 0.65 
Case2 √ √  18.99 0.69 
Case3  √ √ 21.01 0.71 
Case4 √ √ √ 23.08 0.82 

6. Conclusion 
This paper proposed an EDMFEN method which consists of two modules, one module 
MSFEM for multi-scale features enhancement and the other module EDM for obtaining edge 
information of the image. During the multi-scale features enhancement process, edge 
information is continuously injected, and useful information generated from shallow features 
is sent directly to the end of the MSFEB. The framework produces more representative image 
features and aggregates the extracted shallow and deep information together, then combined 
with a spatial attention mechanism that allows features to be more focused on key spatial 
content, thereby improving the performance. Numerous comparative and ablation experiments 
have shown that our network is subjectively and objectively superior to the most advanced 
methods. 
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